If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3+4x-4x^2=0
a = -4; b = 4; c = +3;
Δ = b2-4ac
Δ = 42-4·(-4)·3
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8}{2*-4}=\frac{-12}{-8} =1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8}{2*-4}=\frac{4}{-8} =-1/2 $
| 9n+6=4 | | 3x+35=3x+35 | | x+0.08x=212 | | 14-16n=-14n-18 | | 4x2-2x-36=0 | | 2x-7=3x+5=153 | | -6(7-5x)=318 | | 2x=88.4 | | 3s=-14+4s | | ||2x+3|−7|=12 | | X^2=930+x | | 5x^2+24-4=0 | | 3/5(x-4)-1/3(2x-9)=1/4(x+1)-2 | | -5(2x+10)=-140 | | 3x/4=-7-x | | 14x-22=48 | | 4x+0.7=4.7 | | 7x-14+2x=2x+30 | | -13x-14=-53 | | 2x+4=5×-14 | | 4r^-3=-32 | | 63=-5d+8 | | 0(t)=-16t^2+40t+6 | | 10a+4=100 | | 9x-6x=-5x | | -4.9x^2+30x=0 | | 8((-2+1)=(-15(x+1) | | a=1/2+24*21 | | 5/6x-7=7/8x | | 180=4x+12+90 | | 3+6x=-x+38 | | x÷200=100 |